Neural Networks

Lecture 10
The Bayesian way to fit models

The Bayesian framework

 The Bayesian framework assumes that we always
have a prior distribution for everything.

— The prior may be very vague.

— When we see some data, we combine our prior
distribution with a likelihood term to get a posterior
distribution.

— The likelihood term takes into account how
probable the observed data is given the parameters
of the model.

o It favors parameter settings that make the data likely.
* It fights the prior
« With enough data the likelihood terms always win.

A coin tossing example

o Suppose we know nothing about coins except that each
tossing event produces a head with some unknown
probability p and a tail with probability 1-p. Our model of
a coin has one parameter, p.

e Suppose we observe 100 tosses and there are 53
heads. Whatis p?

e The frequentist answer: Pick the value of p that makes
the observation of 53 heads and 47 tails most probable.

P(D)= p53(1— p)47 «— probability of a particular sequence

dP(D) _ 53p52(1— p)*7 — 47 pS3(1— p)“e

_[93 47 [53 1)47
(p 1—pj[p P

=0 If p=.53

Some problems with picking the parameters
that are most likely to generate the data

What if we only tossed the coin once and we got
1 head?

—Is p=1 a sensible answer?
o Surely p=0.5 Is a much better answer.
IS It reasonable to give a single answer?

— If we don’t have much data, we are unsure
about p.

— Our computations of probabilities will work
much better if we take this uncertainty into
account.

Using a distribution over parameter values

|
o Start with a prior distribution orobability
over p. In this case we used a density 1
uniform distribution. area=1
0 P=— 1
e Multiply the prior probability of 1

each parameter value by the

probability of observing a head ~ Probability 1
given that value. density /

 Then scale up all of the ! 3 E
probability densities so that probability
their integral comes to 1. This density area=1
gives the posterior distribution.

Lets do it again: Suppose we get a talil

o Start with a prior
distribution over p.

e Multiply the prior
probability of each
parameter value by the
probability of observing a
tail given that value.

 Then renormalize to get
the posterior distribution.
Look how sensible it is!

1

probability
density

area=1

2

1

Lets do it another 98 times

o After 53 heads and 47
tails we get a very
sensible posterior
distribution that has its
peak at 0.53 (assuming a
uniform prior).

arega=1 —)

|

probability
density

p—>

Bayes Theorem

o 3 conditional
joint prolbablllty ¥ probability

p(D)pW |D) = p(D,W)=pW)p(D[W)

Prior probability of Probability of observed
weight vector W r data given W

1

Posterior probability

of weight vector W ‘ ijN)p(D W)
W

given training data D

A cheap trick to avoid computing the
posterior probabillities of all weight vectors

e Suppose we just try to find the most probable
weight vector.

— We can do this by starting with a random
weight vector and then adjusting it in the
direction that improves p(W | D).

* |tis easier to work in the log domain. If we want
to minimize a cost we use negative log
probabilities:

pW|D) = pW) p(DIW) [/ p(D)
Cost =—log p(W |D) = —log p(W)—log p(D|W) +log p(D)

Why we maximize sums of log probs

« We want to maximize the product of the probabilities of
the outputs on all the different training cases

— Assume the output errors on different training cases,
C, are independent.

p(D W) =] [p(dc W)

« Because the log function is monotonic, it does not
change where the maxima are. So we can maximize
sums of log probabilities

log p(D W)=Y log p(d, |W)

A even cheaper trick

e Suppose we completely ignore the prior over
weight vectors

— This Is equivalent to giving all possible weight
vectors the same prior probability density.

e Then all we have to do Is to maximize:
log p(D W) =) log p(D, [W)
C

e This is called maximum likelihood learning. It is
very widely used for fitting models in statistics.

Supervised Maximum Likelihood Learning

* Minimizing the squared
residuals is equivalent to
maximizing the log
probability of the correct
answer under a Gaussian

centered at the model’s d=the y=models
gUESS. correct estimate of most

- answer probable value
Yo = f(mPUtc , W)

(dc_yc)2

- 1
p(output =d, |input,,W) = p(d; | y.) = 27me 20°

Vo)’
2

—log p(output =d, |input, W) = k + (dCZ_
o)

Supervised Maximum Likelihood Learning

* Finding a set of weights, W, that minimizes the
squared errors is exactly the same as finding a W
that maximizes the log probability that the model
would produce the desired outputs on all the

training cases.
— We implicitly assume that zero-mean Gaussian
noise Is added to the model’s actual output.

— We do not need to know the variance of the
noise because we are assuming it's the same
In all cases. So It just scales the squared error.

