Neural Networks

Lecture 10
 The Bayesian way to fit models

The Bayesian framework

- The Bayesian framework assumes that we always have a prior distribution for everything.
- The prior may be very vague.
- When we see some data, we combine our prior distribution with a likelihood term to get a posterior distribution.
- The likelihood term takes into account how probable the observed data is given the parameters of the model.
- It favors parameter settings that make the data likely.
- It fights the prior
- With enough data the likelihood terms always win.

A coin tossing example

- Suppose we know nothing about coins except that each tossing event produces a head with some unknown probability p and a tail with probability $1-p$. Our model of a coin has one parameter, p.
- Suppose we observe 100 tosses and there are 53 heads. What is p?
- The frequentist answer: Pick the value of p that makes the observation of 53 heads and 47 tails most probable.

$$
\begin{aligned}
& P(D)= \\
& \begin{aligned}
\frac{d P(D)}{d p} & =53 p^{53}(1-p)^{47} \leftarrow \text { probability of a particular sequence } \\
& =\left(\frac{53}{p}-\frac{47}{1-p}\right)\left[p^{53}(1-p)^{47}\right] \\
& =0 \text { if } p=.53
\end{aligned}
\end{aligned}
$$

Some problems with picking the parameters

 that are most likely to generate the data- What if we only tossed the coin once and we got 1 head?
- Is $p=1$ a sensible answer?
- Surely $p=0.5$ is a much better answer.
- Is it reasonable to give a single answer?
- If we don't have much data, we are unsure about p.
- Our computations of probabilities will work much better if we take this uncertainty into account.

Using a distribution over parameter values

- Start with a prior distribution over p. In this case we used a uniform distribution.

- Multiply the prior probability of each parameter value by the probability of observing a head given that value.

- Then scale up all of the probability densities so that their integral comes to 1 . This gives the posterior distribution.

Lets do it again: Suppose we get a tail

- Start with a prior distribution over p.
- Multiply the prior probability of each parameter value by the probability of observing a tail given that value.

- Then renormalize to get the posterior distribution. Look how sensible it is!

Lets do it another 98 times

- After 53 heads and 47 tails we get a very sensible posterior distribution that has its peak at 0.53 (assuming a uniform prior).

Bayes Theorem

joint probability	conditional
$p(D) p(W \mid D)=p(D, W)=p(W) p(D \mid W)$	

Prior probability of Probability of observed

Posterior probability of weight vector W given training data D

$$
\int_{W} p(W) p(D \mid W)
$$

A cheap trick to avoid computing the posterior probabilities of all weight vectors

- Suppose we just try to find the most probable weight vector.
- We can do this by starting with a random weight vector and then adjusting it in the direction that improves $p(W \mid D)$.
- It is easier to work in the log domain. If we want to minimize a cost we use negative log probabilities:

$$
\begin{aligned}
& p(W \mid D)= \\
& p(W) \quad p(D \mid W) \quad / \quad p(D) \\
& \text { Cost }=-\log p(W \mid D)=-\log p(W)-\log p(D \mid W)+\log p(D)
\end{aligned}
$$

Why we maximize sums of log probs

- We want to maximize the product of the probabilities of the outputs on all the different training cases
- Assume the output errors on different training cases, c, are independent.

$$
p(D \mid W)=\prod_{c} p\left(d_{c} \mid W\right)
$$

- Because the log function is monotonic, it does not change where the maxima are. So we can maximize sums of log probabilities

$$
\log p(D \mid W)=\sum_{c} \log p\left(d_{c} \mid W\right)
$$

A even cheaper trick

- Suppose we completely ignore the prior over weight vectors
- This is equivalent to giving all possible weight vectors the same prior probability density.
- Then all we have to do is to maximize:

$$
\log p(D \mid W)=\sum_{c} \log p\left(D_{c} \mid W\right)
$$

- This is called maximum likelihood learning. It is very widely used for fitting models in statistics.

Supervised Maximum Likelihood Learning

- Minimizing the squared residuals is equivalent to maximizing the log probability of the correct answer under a Gaussian centered at the model's guess.

$$
y_{c}=f\left(\text { input }_{c}, W\right)
$$

$d=$ the $y=$ model's
correct estimate of most
answer probable value
$p\left(\right.$ output $=d_{c} \mid$ input $\left._{c}, W\right)=p\left(d_{c} \mid y_{c}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(d_{c}-y_{c}\right)^{2}}{2 \sigma^{2}}}$
$-\log p\left(\right.$ output $=d_{c} \mid$ input $\left._{c}, W\right)=k+\frac{\left(d_{c}-y_{c}\right)^{2}}{2 \sigma^{2}}$

Supervised Maximum Likelihood Learning

- Finding a set of weights, W , that minimizes the squared errors is exactly the same as finding a W that maximizes the log probability that the model would produce the desired outputs on all the training cases.
- We implicitly assume that zero-mean Gaussian noise is added to the model's actual output.
- We do not need to know the variance of the noise because we are assuming it's the same in all cases. So it just scales the squared error.

